

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Dr. Collinsville, IL 62234

January 28, 2022

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Re: Vermilion North Ash Pond/Old East Ash Pond (IEPA ID: W1838000002-01, 03) Annual Consolidated Report

Dear Mr. LeCrone:

In accordance with 35 IAC § 845.550, Dynegy Midwest Generation, LLC (DMG) is submitting the annual consolidated report for the Vermilion North Ash Pond/Old East Ash Pond (IEPA ID: W1838000002-01, 03), as enclosed.

Sincerely,

Dianni - Lickner

Dianna Tickner Director Decommissioning & Demolition

Enclosures

Annual Consolidated Report Dynegy Midwest Generation, LLC Vermilion Power Plant North Ash Pond/Old East Ash Pond; W1838000002-01, 03

In accordance with 35 IAC § 845.550, Dynegy Midwest Generation, LLC (DMG) has prepared the annual consolidated report. The report is provided in three sections as follows:

Section 1

1) Annual CCR fugitive dust control report (Section 845.500(c))

Section 2

2) Annual inspection report (Section 845.540(b)), including:

A) Annual hazard potential classification certification

B) Annual structural stability assessment certification

C) Annual safety factor assessment certification

D) Inflow design flood control system plan certification

It should be noted that the drawings and attachments of the certification report were included in the operating permit application submittal.

Section 3

3) Annual Groundwater Monitoring and Corrective Action Report (Section 845.610(e))

Section 1 Annual CCR Fugitive Dust Control Report

Annual CCR Fugitive Dust Control Report for

Vermilion Power Plant

Prepared for:

Owner/Operator: Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

Facility Address: Vermilion Power Plant 10188 East 2150 North Rd Oakwood, IL 61858 IEPA ID # W1838000002 - 01,03,04

> Report Completed January 2022

Vermilion Power Plant ANNUAL CCR FUGITIVE DUST CONTROL REPORT

Reporting Year: 4th Quarter 2021

Completed by: Aranno Sichner

Director, Decommissioning and Demolition Title

This Annual CCR Fugitive Dust Control Report has been prepared for the Vermilion Power Plant in accordance with 35 I.A.C. 845.500. Section 1 provides a description of the actions taken to control CCR fugitive dust at the facility during the reporting year, including a summary of any corrective measures taken. Section 2 provides a record of citizen complaints received concerning CCR fugitive dust at the facility during the reporting year, including a summary of any corrective measures taken.

Section 1: Actions Taken to Control CCR Fugitive Dust

In accordance with the Vermilion Power Plant CCR Fugitive Dust Control Plan (Plan), the following control measures were used to manage the CCR fugitive dust from becoming airborne at the facility during the reporting year:

CCR Activity	CCR Fugitive Dust Control Measures	Applicability and Appropriateness of Control Measures	
	Water dry CCR material disturbed during routine maintenance, as necessary.	Wetting CCR reduces the potential for CCR fugitive dust generation during handling of CCR during routine maintenance if handling is required.	
Management of	Water areas of exposed CCR in CCR surface impoundments, as necessary.	Water will be applied to areas of exposed CCR to maintain moisture content to minimize the potential for CCR fugitive dus generation in excessively dry or windy conditions.	
CCR in the facility's CCR unit	Allow naturally occurring grass vegetation to develop in areas of exposed CCR in CCR surface impoundments, as necessary.	Vegetation provides a wind screen and/or cover to reduce wind entrainment of CCR.	
	Apply chemical dust suppressant on areas of exposed CCR in CCR surface impoundments, as necessary.	Mixing an appropriate chemical dust suppressant with water and applying to areas of exposed CCR will minimize the potential for CCR fugitive dust generation in excessively dry or windy conditions.	

Table: Control Measures for CCP Management in CCP Surface Impoundments

Based on a review of the Plan and inspections associated with CCR fugitive dust control performed in the reporting year, the control measures identified in the Plan as implemented at the facility effectively minimized CCR from becoming airborne at the facility. The Vermilion Power Plant ceased to operate in 2011.

No material changes occurred in the reporting year in site conditions potentially resulting in CCR fugitive dust becoming airborne at the facility that warrant an amendment of the Plan.

Section 2: Record of Citizen Complaints

In the event the owner or operator of the facility receives a citizen complaint involving a CCR fugitive dust event at the facility, relevant information about the compliant will be logged. Information that will be recorded includes, as applicable:• Date/Time the complaint is received.

- Date/Time the complaint is received
- Date/Time and duration of the CCR fugitive dust event
- Description of the nature of the CCR fugitive dust event
- Name of the citizen entering the complaint (if provided)
- Address & phone number of citizen entering the complaint (if provided)
- Name of the personnel who took the complaint
- All actions taken to assess and resolve the complaint.

No citizen complaints were received regarding CCR fugitive dust at Vermilion Power Plant in the reporting year.

Section 2 Annual Inspection Report (Section 845.540(b)), including:

A) Annual Hazard Potential Classification Certification, if applicable (Section 845.440)

- B) Annual Structural Stability Assessment Certification, if applicable (Section 845.450)
- C) Annual Safety Factor Assessment Certification, if applicable (Section 845.460)
- D) Inflow Design Flood Control System Plan Certification (Section 845.510(c))

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 35 IAC § 845.540

(b)(1) The CCR surface impoundment must be inspected on an annual basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR surface impoundment is consistent with recognized and generally accepted engineering standards. The inspection must, at a minimum, include:

A) A review of available information regarding the status and condition of the CCR surface impoundment, including files available in the operating record (e.g., CCR surface impoundment design and construction information required by Sections 845.220(a)(1) and 845.230(d)(2)(A), previous structural stability assessments required under Section 845.450, the results of inspections by a qualified person, and results of previous annual inspections);

B) A visual inspection of the CCR surface impoundment to identify signs of distress or malfunction of the CCR surface impoundment and appurtenant structures;

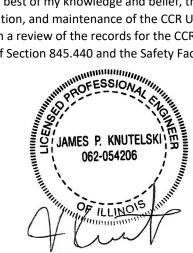
C) A visual inspection of any hydraulic structures underlying the base of the CCR surface impoundment or passing through the dike of the CCR surface impoundment for structural integrity and continued safe and reliable operation;

D) The annual hazard potential classification certification, if applicable (see Section 845.440);

E) The annual structural stability assessment certification, if applicable (see Section 845.450);

F) The annual safety factor assessment certification, if applicable (see Section 845.460); and

G) The inflow design flood control system plan certification (see Section 845.510(c)).


SITE INFORMATION				
	Vermilion Power Station			
Site Name / Address / Date of Inspection	Vermilion County, Illinois 61858			
	10/22/2021			
Operator Name / Address	Dynegy Midwest Generation, LLC			
Operator Name / Address	1500 Eastport Plaza Drive, Collinsville, IL 62234			
CCR unit	North Ash Pond			

INSPECTION REPORT 35 IAC § 845.540	
Date of Inspection 10/22/2021	
(b)(1)(D) The annual hazard potential classification certification, if applicable (see Section 845.440).	Based on a review of the CCR unit's annual hazard potential classification, the unit is classified as a Class II CCR surface impoundment.
(b)(2)(A) Any changes in geometry of the structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(B) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection	There is currently no active instrumentation at the site
b)(2)(C) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection;	See the attached.
b)(2)(D) The storage capacity of the impounding structure at the time of the inspection	Approximately 700 acre-feet
(b)(2)(E) The approximate volume of the impounded water and CCR contained in the unit at the time of the inspection.	Approximately 500 acre-feet
(b)(2)(F) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit	Based on a review of the CCR unit's records and visual observation during the on-site inspection, there was no appearance of an actual or potential structural weakness of the CCR unit, nor an existing condition that is disrupting or would disrupt the operation and safety of the unit.

INSPECTION REPORT 35 IAC § 845.540	
Date of Inspection 10/22/2021	
(b)(2)(G) Any other changes that may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no other changes which may have affected the stability or operation of the CCR unit have taken place since the previous annual inspection.
(b)(1)(G) The inflow design flood control system plan certification (see Section 845.510(c))	Based on a review of the CCR unit's records, the CCR unit is designed, operated, and maintained to adequately manage the flow from the CCR impoundment and control the peak discharge from the inflow design flood.

35 IAC § 845.540 - Annual inspection by a qualified professional engineer.

I, James Knutelski, P.E., certify under penalty of law that the information submitted in this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the state of Illinois. The information submitted, is to the best of my knowledge and belief, true, accurate and complete. Based on the annual inspection, the design, construction, operation, and maintenance of the CCR Unit is consistent with recognized and generally accepted good engineering standards. Based on a review of the records for the CCR unit, the hazard potential classification was conducted in accordance with the requirements of Section 845.440 and the Safety Factor Assessment was conducted in accordance with the requirements of Section 845.460.

James Knutelski, PE Illinois PE No. 062-054206, Expires: 11/30/2023 Date: 01/25/2022

Site Name:Vermilion Power StationCCR Unit:North Ash Pond

35 IAC § 845.540 (b)(2)(B)		35 IAC § 845.540 (b)(2)(C)							
Instrument ID	Maximum recorded reading			Approximate Depth / Elevation					
Instrument ID #	Туре	since previous annual inspection (ft)	Since previous inspection:	Elevation (ft) Depth (ft			Depth (ft)		
	No active instrumentation			Minimum	Present	Maximum	Minimum	Present	Maximum
		Impounded Water		597			17		
			CCR	580		600			20

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 35 IAC § 845.540

(b)(1) The CCR surface impoundment must be inspected on an annual basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR surface impoundment is consistent with recognized and generally accepted engineering standards. The inspection must, at a minimum, include:

A) A review of available information regarding the status and condition of the CCR surface impoundment, including files available in the operating record (e.g., CCR surface impoundment design and construction information required by Sections 845.220(a)(1) and 845.230(d)(2)(A), previous structural stability assessments required under Section 845.450, the results of inspections by a qualified person, and results of previous annual inspections);

B) A visual inspection of the CCR surface impoundment to identify signs of distress or malfunction of the CCR surface impoundment and appurtenant structures;

C) A visual inspection of any hydraulic structures underlying the base of the CCR surface impoundment or passing through the dike of the CCR surface impoundment for structural integrity and continued safe and reliable operation;

D) The annual hazard potential classification certification, if applicable (see Section 845.440);

E) The annual structural stability assessment certification, if applicable (see Section 845.450);

F) The annual safety factor assessment certification, if applicable (see Section 845.460); and

G) The inflow design flood control system plan certification (see Section 845.510(c)).

SITE INFORMATION				
	Vermilion Power Station			
Site Name / Address / Date of Inspection	Vermilion County, Illinois 61858			
	10/22/2021			
Operator Name / Address	Dynegy Midwest Generation, LLC			
Operator Name / Address	1500 Eastport Plaza Drive, Collinsville, IL 62234			
CCR unit	Old East Ash Pond			

INSPECTION REPORT 35 IAC § 845.540	
Date of Inspection 10/22/2021	
(b)(1)(D) The annual hazard potential classification certification, if applicable (see Section 845.440).	Based on a review of the CCR unit's annual hazard potential classification, the unit is classified as a Class II CCR surface impoundment.
(b)(2)(A) Any changes in geometry of the structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(B) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection	There is currently no active instrumentation at the site
b)(2)(C) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection;	See the attached.
b)(2)(D) The storage capacity of the impounding structure at the time of the inspection	Approximately 800 acre-feet.
(b)(2)(E) The approximate volume of the impounded water and CCR contained in the unit at the time of the inspection.	Approximately 700 acre-feet
(b)(2)(F) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit	Based on a review of the CCR unit's records and visual observation during the on-site inspection, there was no appearance of an actual or potential structural weakness of the CCR unit, nor an existing condition that is disrupting or would disrupt the operation and safety of the unit.

INSPECTION REPORT 35 IAC § 845.540 Date of Inspection 10/22/2021	
(b)(2)(G) Any other changes that may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no other changes which may have affected the stability or operation of the CCR unit have taken place since the previous annual inspection.
(b)(1)(G) The inflow design flood control system plan certification (see Section 845.510(c))	Unit has no inflow or water impounded.

35 IAC § 845.540 - Annual inspection by a qualified professional engineer.

I, James Knutelski, P.E., certify under penalty of law that the information submitted in this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the state of Illinois. The information submitted, is to the best of my knowledge and belief, true, accurate and complete. Based on the annual inspection, the design, construction, operation, and maintenance of the CCR Unit is consistent with recognized and generally accepted good engineering standards. Based on a review of the records for the CCR unit, the hazard potential classification was conducted in accordance with the requirements of Section 845.440 and the Safety Factor Assessment was conducted in accordance with the requirements of Section 845.460.

IN CONTROL ESSION HIMMAN HIMMAN JAMES P. KNUTELSK 062-054206 ILLINOIS OF 1111

James Knutelski, PE Illinois PE No. 062-054206, Expires: 11/30/2023 Date: 01/25/2022

Site Name:Vermilion Power StationCCR Unit:Old East Ash Pond

35 IAC § 845.540 (b)(2)(B)		35 IAC § 845.540 (b)(2)(C)							
la staura sat ID	Maximum recorded reading			Approximate Depth / Elevation					
Instrument ID #	Туре	since previous annual inspection (ft)	Since previous inspection:	I	Elevation (ft)		Depth (ft)		
	No active instrumentation		•	Minimum	Present	Maximum	Minimum	Present	Maximum
		Impounded Water		0			0		
			CCR	580		630			50

Memorandum

Date:	October 12, 2021
То:	Cynthia Vodopivec
cc:	Charles Koudelka Phil Morris
From:	Vic Modeer
Subject:	Dynegy Midwest Generation, LLC Vermilion Power Plant – North Ash Pond

Documentation of Initial Hazard Potential Classification Certification Vermilion Power Plant North Ash Pond.

Purpose

This letter documents the certification of the initial hazard potential classification assessment for the Vermillion Power Plant North Ash Pond area. The NAP area is adjacent to and overlaps the Old East Ash Pond (OEAP) area. The OEAP area does not pond water. A surface impoundment is located on the NAP area.

The *Illinois Administrative Code (IAC), Title 35, Part 845.440* requires the owner or operator of an existing coal combustion residuals (CCR) surface impoundment to conduct an initial hazard potential classification assessment, and the basis for the classification, of the CCR unit as either a Class 1 (high hazard) or Class 2 (significant hazard) CCR surface impoundment.

Results

A breach analysis was performed to evaluate potential hazards associated with a failure of the NAP area's perimeter containment dike. Breach locations were selected based on nearby downstream areas that could be potentially impacted. The breach failure mode consisted of the NAP area's reservoir full of water and a resultant overtopping of the perimeter containment dike's crest. The overtopping breach failures were modeled along the NAP area's northern perimeter containment dike for two downstream conditions along the Middle Fork Vermilion River: 1) "Full Riverbank Flow"; and 2) "100-Year Flow" scenarios.

Model results indicate that a breach of the northern perimeter containment dike would inundate the undeveloped floodplain area immediately to the north of the North Ash Pond. The model results indicate that breach discharge would flow into the Middle Fork Vermilion River and not result in any structures being impacted. Therefore, failure or mis-operation of the North Ash Pond would result in no probable loss of human life. However, a NAP area breach event would result in off-site release of

CCR material onto immediate downstream areas and into the Middle Fork Vermilion River, resulting in environmental damage.

Section 845.120 defines a "Class 2 CCR surface impoundment" as a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

Based on the results of the analysis summarized above, the initial hazard potential classification was conducted in accordance with Section 845.440, with the NAP area assigned a Class 2 hazard potential classification. Accordingly, the certification below satisfies the requirements of Section 845.440(a)(2).

Sincerely,

white mole

Vic Modeer, PE, D.GE (IL, MO, IN, KY, OH, LA) Engineering Manager

Prepared for

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, Illinois 62234

CCR INITIAL STRUCTURAL STABILITY ASSESSMENT

VERMILION POWER PLANT OLD EAST ASH POND AREA NORTH ASH POND AREA OAKWOOD, ILLINOIS

Prepared by

engineers | scientists | innovators

134 N. Lasalle Street, Suite 300 Chicago, Illinois 60602

Project Number CHE8404A

October 2021

TABLE OF CONTENTS

1.	Introduction	1
	1.1. Facility Information	1
2.	Initial Structural Stability Assessment	
	2.1. Foundations and Abutments	
	2.2. Slope Protection	2
	2.3. Dike Compaction	3
	2.4. Vegetated Slopes	3
	2.5. Spillways	4
	2.6. Stability and Structural Integrity of Hydraulic Structures	
	2.7. Downstream Slope Inundation/Stability	5
3.	Certification	6

1. INTRODUCTION

Dynegy Midwest Generation, LLC (Dynegy) is the owner of inactive coal-fired Vermilion Power Station Plant (VPP), also referred to as Vermilion Power Station, located approximately 13 miles Northwest of Danville, Illinois. The Old East Ash Pond Area (OEAP) and North Ash Pond Area (NAP) are inactive surface impoundments storing coal combustion residuals (CCR). OEAP and NAP must meet the requirements of 35 Ill. Admin. Code 845, Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (Part 845).

The OEAP and NAP are existing CCR surface impoundment as defined by Section 845.120. Although OEAP was designed to hold liquids, it has been filled with CCR and soil and does not hold water. This Initial Structural Stability Assessment addresses the requirements of Part 845.450 for the OEAP and NAP.

1.1. Facility Information

Facility:	Vermilion Power Plant 10188 East 2150 North Rd Oakwood, IL 61858
Owner/Operator:	Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

2. INITIAL STRUCTURAL STABILITY ASSESSMENT

<u>Section 845.450(a)</u>: The owner or operator of a CCR surface impoundment must conduct initial and annual structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR surface impoundment is consistent with recognized and generally accepted engineering practices for the maximum volume of CCR and CCR wastewater that can be impounded in the CCR surface impoundment. The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: [the standards in (a)(1)-(7)].

An initial structural stability assessment has been performed to document that the design, construction, operation, and maintenance of OEAP and NAP is consistent with recognized and generally accepted good engineering practices. The results of the structural stability assessment are discussed in the following sections.

Based on the assessment and its results, the design, construction, operation, and maintenance of OEAP and NAP were found to be consistent with recognized and generally accepted good engineering practices and meets the standards in Section 845.450(a)(1)-(7), except as noted herein.

2.1. Foundations and Abutments

<u>Section 845.450(a)(1)</u>: The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: 1) Stable foundations and abutments;

The stability of the OEAP and NAP foundation and abutments were evaluated based on the review of History of Construction, review of observations from the 2019 annual inspection forms, review of available geotechnical data, and performing slope stability analyses.

The foundation of OEAP and NAP and abutments are deemed to be stable after the review of geotechnical investigations, laboratory data, and safety factors for slip surfaces meeting or exceeding the minimum requirements specified by Section 845.460.

2.2. <u>Slope Protection</u>

<u>Section 845.450(a)(2):</u> The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: ... 2) Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown;

Geosyntec[▷]

consultants

Procedures for operation and maintenance were reviewed. The adequacy of slope protection present at OEAP and NAP was evaluated by reviewing inspection reports and conditions observed in the field during the 2019 annual inspection, and subsequent visits made by Geosyntec in 2020 and 2021.

The perimeter dike slopes are generally 3H:1V and are covered with vegetation for slope protection. Dynegy regularly maintains the slopes, including repairing observed surface erosion and addressing areas of poor vegetation growth, as required.

Based on this evaluation, OEAP and NAP meet the requirements of Section 845.450(a)(2).

2.3. <u>Dike Compaction</u>

<u>Section 845.450(a)(3):</u> The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: ... 3) Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR surface impoundment;

Compaction of the OEAP and NAP perimeter dike was evaluated using field data obtained from the various geotechnical investigation. In OEAP, the standard penetration test (SPT) N-values for the cohesive component of the perimeter dike ranges from 5 to 93, with an average of 18; the range corresponds to a consistency of soft to hard, with the average value corresponding to very stiff. The SPT N-values for the coal ash component of the OEAP perimeter dike ranges from 8 to 30, with an average of 17; the range corresponds to a consistency of medium stiff to very stiff with the average value corresponding to very stiff. In NAP, the standard penetration test (SPT) N-values for the cohesive component of the perimeter dike ranges from 6 to 51, with an average of 18; the range corresponds to a consistency of soft to hard, with the average value corresponding to very stiff.

The consistencies based on average values are indicative of mechanically compacted dikes. Further, slope stability analyses as required by Section 845.460 result in acceptable safety factors. Therefore, the dike compaction and density are sufficient for withstanding required ranges in loading conditions.

2.4. Vegetated Slopes

<u>Section 845.450(a)(4):</u> The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: ... 4) Slope protection consistent with Section 845.430;

The adequacy of slope vegetation at OEAP and NAP was evaluated by reviewing conditions observed from the 2019 annual inspection forms, and visual observations obtained from additional CHE8404A/U-845.450 OEAP_SSA_Cert 3 October 2021

Geosyntec[▷]

consultants the time of the 2019 annual inspection

field visits conducted by Geosyntec in 2020 and 2021. At the time of the 2019 annual inspection, and site visits in 2020 and 2021, the exterior slopes were vegetated and well-maintained. Some woody vegetation was observed on lower portions of the perimeter dike.

Based on this evaluation, OEAP and NAP meet the requirements of Section 845.450 with the exception of limited areas where woody vegetation exists. Dynegy has an operation and maintenance plan to remove the woody vegetation in accordance with Section 845.430(b)(4).

2.5. Spillways

<u>Section 845.450(a)(5):</u> The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: ... 5) A single spillway or a combination of spillways configured as specified in subsection (a)(5)(A). The combined capacity of all spillways must be designed, constructed, operated, and maintained to adequately manage flow during and following the peak discharge from the event specified in subsection (a)(5)(B);

The OEAP is inactive and does not have a reservoir or a spillway. Therefore, Section 845.450(a)(5) is not applicable to the OEAP. However, the spillway at the NAP was evaluated using hydrologic and hydraulic analyses, and historic design and construction information provided by Dynegy. The NAP is a Class 2 CCR surface impoundment; therefore, the 1,000-year storm event is the design flow event for NAP, per Section 845.510(a)(3)(B).

Per the June 22, 2021 Illinois Attorney General (IAG) Interim Order (Order), <u>II. Interim Injunction</u> <u>Relief</u> (2)(b); Within forty-five (45) days of the entry of this Order, Defendant shall submit to Illinois EPA, for it review and approval, a written scope of work for the removal of free water and dewatering of the Ponds at the Site, including a proposed schedule for implementation. Therefore, the starting water surface elevation was set at the bottom elevation of the NAP (585.0 feet) when evaluating the 1,000-year storm event as the IAG Order requires removal of free water from NAP as part of its normal operating condition.

The NAP has a single spillway that consists of an 18-inch diameter corrugate metal pipe (CMP) through the divider dike which discharges into the secondary pond. The spillway pipe is constructed of metal, which is a non-erodible material designed to carry sustained flows. The capacity of the spillway was evaluated using hydrologic and hydraulic analyses. The analysis found that the spillway adequately manages flow during peak discharge resulting from the 1,000-year storm event to prevent overtopping of the embankments with a starting water surface elevation at the bottom of NAP. The hydrologic and hydraulic analysis did not consider additional outflow from a portable pump.

Based on these evaluations, the OEAP and NAP meet the requirements in Section 845.450(a)(5).

4

2.6. <u>Stability and Structural Integrity of Hydraulic Structures</u>

<u>Section 845.450(a)(6):</u> The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: ... 6) Hydraulic structures underlying the base of the CCR surface impoundment or passing through the dike of the CCR surface impoundment that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the CCR surface impoundment;

The OEAP is inactive and does not have a reservoir or a spillway. Therefore, Section 845.450(a)(6) is not applicable to the OEAP. The discharge pipe for the NAP will be removed as part of the upcoming closure. Dynegy is in the process of submitting the construction permit for the closure activities.

2.7. Downstream Slope Inundation/Stability

<u>Section 845.450(a)(7):</u> The assessment must, at a minimum, document whether the CCR surface impoundment has been designed, constructed, operated, and maintained with: ... 7) For CCR surface impoundments with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The river level is generally around elevation 573 ft with ordinary high-water mark being at an approximate elevation of 580 ft. The toe of the perimeter dike is around 590 ft for OEAP and 580 ft NAP. It is unlikely that the river level would rise over the toe of perimeter dikes and stay there for a considerable amount of time to saturate the cohesive soils that could reduce the stability of the perimeter dike. Therefore, it is unlikely that a rapid drawdown condition would occur at the OEAP and NAP perimeter dike. Based on this evaluation, Section 845.450(a)(7) is not applicable for OEAP and NAP.

Geosyntec[▷]

3. CERTIFICATION

CCR Unit: Dynegy Midwest Generation, LLC; Vermilion Power Plant, Old East Ash Pond Area and North Ash Pond Area

I, John Seymour, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify in accordance with Section 845.450(c), to the best of my knowledge, information, and belief, that the information contained in this plan has been prepared in accordance with the accepted practice of engineering and meets the requirements of Section 845.450, with the exception for Section 845.450(a)(4) where woody vegetation was identified.

John Seymour Printed Name "Internet and a second second 062-040562 LICENSED 2011 PROFESSIONA Signature Date 062.040562 Illinois 30 November 2021 **Registration Number** State **Expiration Date**

6

Affix Seal

CHE8404A/U-845.450 OEAP_SSA_Cert

Prepared for

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, Illinois 62234

CCR INITIAL SAFETY FACTOR ASSESSMENT

VERMILION POWER PLANT OLD EAST ASH POND AREA NORTH ASH POND AREA OAKWOOD, ILLINOIS

Prepared by

engineers | scientists | innovators

134 N. Lasalle Street, Suite 300 Chicago, Illinois 60602

Project Number CHE8404A

October 2021

TABLE OF CONTENTS

1.	Introduction1
	1.1. Facility Information1
2.	Initial Safety Factor Assessment2
3.	Certification

TABLE OF CONTENTS

LIST OF TABLES

Table 2-1 Summary of Initial Safety Factor Assessments

1. INTRODUCTION

Dynegy Midwest Generation, LLC (Dynegy) is the owner of the inactive coal-fired Vermilion Power Station Plant (VPP), also referred to as Vermilion Power Station, located approximately 13 miles Northwest of Danville, Illinois. The Old East Ash Pond Area (OEAP) and North Ash Pond Area (NAP) are inactive surface impoundments storing coal combustion residuals (CCR). The OEAP and NAP must meet the requirements of 35 Ill. Admin. Code 845, Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (Part 845).

The OEAP and NAP are existing CCR surface impoundment as defined by Section 845.120. Although OEAP was designed to hold liquids, it has been filled with CCR and soil and does not hold water. This Initial Safety Factor Assessment addresses the requirements of Section 845.460 for OEAP and NAP.

1.1. Facility Information

Facility:	Vermilion Power Plant 10188 East 2150 North Rd Oakwood, IL 61858
Owner/Operator:	Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

2. INITIAL SAFETY FACTOR ASSESSMENT

<u>Section 845.460(a)</u>: The owner or operator of a CCR surface impoundment must conduct an initial and annual safety factor assessments for each CCR surface impoundment and document whether the calculated factors of safety for each CCR surface impoundment achieve the minimum safety factors specified in this Section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

- 1. For new CCR surface impoundments, the calculated static factor of safety under the end-of-construction loading condition must equal or exceed 1.30. The assessment of this loading condition is only required for the initial safety factor assessment and is not required for subsequent assessments.
- 2. The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.
- 3. The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- 4. The calculated seismic factor of safety must equal or exceed 1.00.
- 5. For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed by Geosyntec to evaluate the stability of the OEAP and NAP perimeter dike. Available data from field investigations, existing documents and reports, and other information provided to Geosyntec from Dynegy were utilized to perform this assessment.

In general, the perimeter dike of OEAP consists of a fine-grained soil and coal ash and NAP consists of a fine-grained compacted soil, both overlying native clay alluvium and sand alluvium ranging from 10 to 20 feet thick. Glacial and reworked till underlays the alluvium soils with a thickness ranging between 10 and 25 feet extending down to shale. The phreatic surface was established considering groundwater level readings from borings and established wells in and around the OEAP and NAP.

Two (2) representative cross sections were analyzed for each pond area, for a total four (4) sections, using limit equilibrium slope stability analysis software to evaluate the stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. The cross sections were evaluated for the loading conditions stipulated in Section 845.460(a).

Geosyntec[▷]

consultants

OEAP ceased operations with no further construction after receiving a cover prior to 1998. Therefore, the end-of-construction short-term loading condition was not applicable and not analyzed for this initial safety factor assessment. Furthermore, OEAP is inactive with no reservoir to pool water against the perimeter dike. Therefore, the long-term maximum surcharge pool loading condition is not applicable and was not analyzed for this initial safety factor assessment.

NAP was constructed in the late 1970s, and it is currently inactive. Therefore, the end-ofconstruction short-term loading condition was not applicable and not analyzed for this initial safety factor assessment as well.

Results of the Initial Safety Factor Assessments, for the critical cross section for the applicable loading conditions, are provided in Table 1 (i.e., the table identifies the lowest calculated factor of safety for any one of the four analyzed cross sections for each loading condition).

Loading Conditions	845.460(a) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
End-of-Construction Loading	1	1.30	Not Applicable
Long-term Maximum Storage Pool Loading	2	1.50	1.70
Maximum Surcharge Pool Loading	3	1.40	2.07
Seismic	4	1.00	>1.00
Soils Susceptible to Liquefaction	5	1.20	>1.20

Table 2-1: Summary of Initial Safety Factor Assessments

Based on this evaluation, OEAP and NAP meet the requirements in Section 845.460(a).

Geosyntec^D consultants

3. CERTIFICATION

CCR Unit: Dynegy Midwest Generation, LLC; Vermilion Power Plant, Old East Ash Pond Area and North Ash Pond Area

I, John Seymour, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify in accordance with Section 845.460(b), to the best of my knowledge, information, and belief, that the information contained in this plan has been prepared in accordance with the accepted practice of engineering and meets the requirements of Section 845.460.

John Seymour Printed Name 062-040562 LICENSED 7021 PROFESSIONAL ENGINEER Signature Date 062.040562 Illinois 30 November 2021 **Registration Number** State **Expiration** Date

4

Affix Seal

October 2021

Prepared for

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, Illinois 62234

INITIAL CCR INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN VERMILION POWER PLANT OLD EAST ASH POND AREA NORTH ASH POND AREA OAKWOOD, ILLINOIS

Prepared by

engineers | scientists | innovators

134 N. Lasalle Street, Suite 300 Chicago, Illinois 60602

Project Number CHE8404A

October 2021

TABLE OF CONTENTS

1.	Introduction	1
	1.1. Facility Information	1
2.	Inflow Design Flood Control System Plan	2
	2.1. Initial Inflow Design Flood Control Systems (Section 845.510(a))	2
	2.2. Discharge from the CCR Surface Impoundment (Section 845.510(b))	4
3.	Certification	5

1. INTRODUCTION

Dynegy Midwest Generation, LLC (Dynegy) is the owner of the inactive coal-fired Vermilion Power Plant (VPP), also referred to as Vermilion Power Station, located approximately 13-miles Northwest of Danville, Illinois. The Old East Ash Pond Area (OEAP) and North Ash Pond Area (NAP) are two (2) overlapping areas that make up one inactive surface impoundment storing coal combustion residuals (CCR) and will herein referred to as "OEAP/NAP".

Both the OEAP and NAP were individually designed as surface water impoundments to allow suspended solids within the surface water (CCR, soil, etc.) to settle out to the bottom surface of the impoundment. However, the OEAP has been filled with CCR and soil, and no longer impounds surface water. There is an existing surface water impoundment near the northern end of NAP.

Due to the existing impoundment within the NAP, the OEAP/NAP is an existing CCR surface impoundment as defined in 35 Ill. Admin. Code (IAC) 845, Standards for the Disposal of CCR in Surface Impoundments, Part 845.120.

Therefore, OEAP/NAP must meet the requirements of 35 Ill. Admin. Code (IAC) 845, Standards for the Disposal of CCR in Surface Impoundments (herein referred to as "Section 845"). This Inflow Design Flood Control System Plan addresses the requirements of Section 845.510(c) for the OEAP/NAP.

1.1. Facility Information

Facility:	Vermilion Power Plant 10188 East 2150 North Rd Oakwood, IL 61858
Owner/Operator:	Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

2. INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN

<u>Section 845.510(c)(1):</u> Content of the Plan. The owner or operator must prepare initial and annual inflow design flood control system plans for the CCR surface impoundment. These plans must document how the inflow design flood control system has been designed and constructed to meet the requirements of this Section. Each plan must be supported by appropriate engineering calculations.

<u>Section 845.510(c)(2)</u>: Amendment of the Plan. The owner or operator of the CCR surface impoundment may amend the written inflow design flood control system plan at any time. The owner or operator must amend the written inflow design flood control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.

Hydrologic and hydraulic analyses were completed for the OEAP/NAP initial inflow design flood control system plan. The approach and corresponding results of the analyses are presented in the following subsections. Input data utilized for the analyses was obtained from spillway information shown on design drawings, construction information, topographic surveys, along with information about operational and maintenance procedures provided by Dynegy.

As discussed in **Section 1**, the OEAP has been filled with CCR and soil, and no longer impounds surface water. The OEAP is graded to route storm water surface run-off to the NAP surface water impoundment and spillway system. The OEAP does not have a surface water impoundment or spillway to evaluate.

Therefore, the following subsections pertain only to the evaluation of the NAP in accordance with *Section 845.510, "inflow design flood control system plan criteria"*.

2.1. Initial Inflow Design Flood Control Systems (Section 845.510(a))

<u>Section 845.510(a)</u>: The owner or operator of an existing or new CCR surface impoundment or any lateral expansion of a CCR surface impoundment must design, construct, operate, and maintain an inflow design flood control system as specified in subsections (a)(1) and (2).

1. The inflow design flood control system must adequately manage flow into the CCR surface impoundment during and following the peak discharge of the inflow design flood specified in subsection (a)(3).

2. The inflow design flood control system must adequately manage flow from the CCR surface impoundment to collect and control the peak discharge resulting from the inflow design flood specified in subsection (a)(3).

3. The inflow design flood, at a minimum, is:

A. For a Class 1 CCR surface impoundment, as determined under Section 845.440(a), the probable maximum flood;

B. For a Class 2 CCR surface impoundment, as determined under Section 845.440(a), the 1000-year flood; or

C. For an incised CCR surface impoundment, the 25-year flood.

The NAP is a Class 2 CCR surface impoundement based on the certified documentation of initial hazard potential classification (Luminant, October 2021), in accordance with *Section 845.440*.

An initial inflow design flood control system plan, supported by a hydraulic and hydrologic analysis, was developed for the NAP by evaluating the effects of a 24-hour duration design storm for the 1,000-year Inflow Design Flood (IDF) using a hydrologic HEC-HMS (Version 4.8) computer model and a starting water surface elevation of 585.0 feet (NAVD 88).

In accordance with the June 22, 2021 Illinois Attorney General (IAG) Interim Order (Order), <u>II.</u> <u>Interim Injunction Relief</u> (2)(b); Within forty-five (45) days of the entry of this Order, Defendant shall submit to Illinois EPA, for it review and approval, a written scope of work for the removal of free water and dewatering of the Ponds at the Site, including a proposed schedule for implementation. Therefore, the starting water surface elevation was set at the bottom elevation of the NAP (585.0 feet) when evaluating the 1,000-year IDF as the IAG Order requires removal of free water from NAP as part of its normal operating condition.

The computer model evaluated the NAP ability to collect and control the 1,000-year IDF under IAG IO mandatory conditions. Rainfall data for the 1,000-year IDF was obtained from the National Oceanic and Atmosheric Administration (NOAA) Precipitation Frequency Distribution Server (PFDS), which is an online interactive map that provides NOAA Atlas 14 rainfall data for a selected location. The NOAA Atlas 14 rainfall depth is 10.5 inches at NAP per the PFDS for the 1,000-year, 24-hour rainfall event.

The HEC-HMS model results for the NAP indicate that the CCR unit has sufficient storage capacity and spillway structures to adequately manage (1) flow into the CCR unit during and following the peak discharge of the 1,000-year IDF and (2) flow from the CCR unit to collect and control the peak discharge resulting from the 1,000-year IDF. The peak water surcharge elevation

Geosyntec[▷]

consultants

is 602.2 feet (NAVD 88), and the minimum crest elevation of the NAP dike is 604.0 feet (NAVD 88). Therefore, overtopping of the NAP dike is not expected during the evaluated 1,000-year IDF.

Based on this evaluation, the NAP meets the requirements in Section 845.510(a).

2.2. Discharge from the CCR Surface Impoundment (Section 845.510(b))

<u>Section 845.510(a)</u>: Discharge from the CCR surace impoundment must be handled in accordance with the surface water requirements in Section 845.110(b)(3) and 35 Ill. Adm. Code Subtitle C.

<u>Section 845.110(b)</u>: Any CCR surface impoundment or lateral expansion of a CCR surface impoundment is subject to the following requirements:

3. Rivers, Lakes and Streams Act [615 ILCS 5/23 and 23(a)] and 17 Ill. Adm. Code 3702.

The handling of discharge was evaluated by reviewing design drawings, operational and maintenance procedures, and the inflow design flood control system plan developed per *Section* 845.510(a).

Based on this evaluation, outflow from the NAP is ultimately routed through a NPDES-permitted discharge into the Middle Fork Vermilion River via its secondary settling pond non-CCR surface impoundment. Hydraulic and hydrologic analyses performed as part of the initial inflow design flood control system plan found that the NAP adequately manages flow during the 1,000-year IDF, as overtopping of the NAP is not expected during the evaluated 1,000-year IDF.

Therefore, discharge of pollutants in violation of the NPDES permit is not expected during normal and IDF conditions as all discharge is routed through the existing spillway system and NPDES-permitted outfall.

Based on this evaluation, the NAP meets the requirements in Section 845.510(b).

Geosyntec[▷]

3. CERTIFICATION

CCR Unit: Dynegy Midwest Generation, LLC; Vermilion Power Plant, Old East Ash Pond Area and North Ash Pond Area

I, John Seymour, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify in accordance with Section 845.510(c)(3) to the best of my knowledge, information, and belief, that the information contained in this plan has been prepared in accordance with the accepted practice of engineering and that, for the above referenced CCR Unit, this initial inflow design flood control system plan meets the requirements of *Section* 845.510.

John Seymour Printed Name ANNINI IIIIIIIIII 062-040562 **I ICENSED** ROFESSIONA Signature Date 062.040562 Illinois 30 November 2021 **Registration Number** State **Expiration Date**

Affix Seal

Section 3 Annual Groundwater Monitoring and Corrective Action Report (Section 845.610(e)) Prepared for Dynegy Midwest Generation, LLC

Date January 31, 2022

Project No. 1940100722

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NORTH ASH POND AND OLD EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT VERMILION POWER PLANT NORTH ASH POND AND OLD EAST ASH POND

Project name	Vermilion Power Plant North Ash Pond and Old East Ash Pond
Project no.	1940100722
Recipient	Dynegy Midwest Generation, LLC
Document type	Annual Groundwater Monitoring and Corrective Action Report
Version	FINAL
Date	January 31, 2022
Prepared by	Eric D. Plante
Checked by	Lauren Cook
Approved by	Brian Hennings
Description	Annual Report in Support of Part 845

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

là

Eric D. Plante Geologist

Brian Hennings, PG Senior Managing Hydrogeologist

CONTENTS

EXECL	JTIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	6
3.	Key Actions Completed in 2021	7
4.	Problems Encountered and Actions to Resolve the Problems	10
5.	Key Activities Planned for 2022	11
6.	References	12

TABLES (IN TEXT)

Table A	Proposed Part 845 Monitoring Well Network
Table D	Company of Charles doubter Company of Calls at a

Table BSummary of Groundwater Samples Collected

FIGURES

Figure	1	Prop	osed 8	345	Gro	undw	ater Mo	onit	toring	Well	Networ	k
Figure	2	Poter	ntiome	etric	Su	rface	Мар –	Ma	rch 2	9, 20	21	
	~	D 1			~	<i>c</i>		•		202		

Figure 3 Potentiometric Surface Map – April 12, 2021

APPENDICES

Appendix A Table 3-1. Background Groundwater Quality and Standards, Groundwater Monitoring Plan, Vermilion Power Plant, North Ash Pond and Old East Ash Pond, Oakwood, Illinois.
 Appendix B History of Potential Exceedances, Vermilion Power Plant, North Ash Pond and Old East Ash Pond, Oakwood, Illinois.

ACRONYMS AND ABBREVIATIONS

§	Section
35 I.A.C.	Title 35 of the Illinois Administrative Code
bgs	below ground surface
CCR	coal combustion residuals
DMG	Dynegy Midwest Generation, LLC
GMP	Groundwater Monitoring Plan
GWPS	groundwater protection standard
HCR	Hydrogeologic Site Characterization Report
ID	identification
IEPA	Illinois Environmental Protection Agency
LGU	lower groundwater unit
NA	not applicable
NAP	North Ash Pond
NID	National Inventory of Dams
No.	number
OEAP	Old East Ash Pond
Part 845	35 I.A.C. § 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments
PMP	potential migration pathway
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SI	surface impoundment
SSI	statistically significant increase
TDS	total dissolved solids
UA	uppermost aquifer
VPP	Vermilion Power Plant
WLO	water level only

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 35 of the Illinois Administrative Code (35 I.A.C.) Section (§) 845.610(e) (*Annual Groundwater Monitoring and Corrective Action Report*) for the North Ash Pond (NAP) and Old East Ash Pond (OEAP) located at Vermilion Power Plant (VPP) near Oakwood, Illinois.

An operating permit application for the NAP and OEAP was submitted by Dynegy Midwest Generation, LLC (DMG) to the Illinois Environmental Protection Agency (IEPA) by October 31, 2021 in accordance with the requirements specified in 35 I.A.C. § 845.230(d), and is pending approval. The NAP is recognized by Vistra identification (ID) Numbers (No.) 910 and IEPA ID No. W1838000002-01. The OEAP is recognized by Vistra ID No. 911 and IEPA ID No. W1838000002-03.

A Groundwater Monitoring Plan (GMP; Ramboll Americas Engineering Solutions, Inc. [Ramboll], 2021a), which included a Statistical Analysis Plan, was developed and submitted as part of the operating permit application to propose a monitoring well network and monitoring program specific to the NAP and OEAP that will comply with 35 I.A.C. § 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (Part 845; IEPA, 2021). The proposed groundwater protection standards (GWPS), as presented in the GMP, are shown in **Appendix A**.

Groundwater concentrations observed from 2015 to 2021 were presented in the Hydrogeologic Site Characterization Report (HCR; Ramboll, 2021b) and evaluated in the presentation of the History of Potential Exceedances (Ramboll, 2021c) included in the operating permit application, as required by 35 I.A.C. § 845.230(d). Groundwater concentrations from 2015 to 2021 that exceeded the GWPS set forth in 35 I.A.C. § 845.600(a) are considered potential exceedances because the methodology used to determine them is proposed in the Statistical Analysis Plan, which is pending IEPA approval. The determination of potential historical exceedances of 35 I.A.C. § 845.600(a) and a summary of potential historical exceedances of proposed GWPS are shown in **Appendix B**.

Evaluation of background groundwater quality was presented in the GMP (Ramboll, 2021a), and compliance with Part 845 will be determined after the first round of groundwater sampling following IEPA's issuance of an operating permit.

This report summarizes only the information presented in the operating permit application for the NAP and OEAP, submitted to IEPA by October 31, 2021, which is pending IEPA approval.

1. INTRODUCTION

This report has been prepared by Ramboll on behalf of DMG, to provide the information required by 35 I.A.C. § 845.610(e) for the NAP and OEAP located at VPP near Oakwood, Illinois. The owner or operator of a coal combustion residuals (CCR) surface impoundment (SI) must prepare and submit to IEPA by January 31st of each year an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year as part of the Annual Consolidated Report required by 35 I.A.C. § 845.550. The Annual Groundwater Monitoring and Corrective Action Report shall document the status of the groundwater monitoring and corrective action plan for the CCR SI, summarize key actions completed, including the status of permit applications and Agency approvals, describe any problems encountered and actions to resolve the problems, and project key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR SI and all background (or upgradient) and downgradient monitoring wells, including the well ID Nos., that are part of the groundwater monitoring program for the CCR SI, and a visual delineation of any exceedances of the GWPS.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. A potentiometric surface map for each groundwater elevation sampling event required by 35 I.A.C. § 845.650(b)(2).
- 4. In addition to all the monitoring data obtained under 35 I.A.C. §§ 845.600-680, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, and the dates the samples were collected.
- 5. A narrative discussion of any statistically significant increases (SSIs) over background levels for the constituents listed in 35 I.A.C. § 845.600.
- 6. Other information required to be included in the annual report as specified in 35 I.A.C. §§ 845.600-680.
- 7. A section at the beginning of the annual report that provides an overview of the current status of the groundwater monitoring program and corrective action plan for the CCR SI. At a minimum, the summary must:
 - i. Specify whether groundwater monitoring data shows a SSI over background concentrations for one or more constituents listed in 35 I.A.C. § 845.600.
 - ii. Identify those constituents having a SSI over background concentrations and the names of the monitoring wells associated with the SSI(s).
 - iii. Specify whether there have been any exceedances of the GWPS for one or more constituents listed in 35 I.A.C. § 845.600.
 - iv. Identify those constituents with exceedances of the GWPS in 35 I.A.C. § 845.600 and the names of the monitoring wells associated with the exceedance.
 - v. Provide the date when the assessment of corrective measures was initiated for the CCR SI.

- vi. Provide the date when the assessment of corrective measures was completed for the CCR SI.
- vii. Specify whether a remedy was selected under 35 I.A.C. § 845.670 during the current annual reporting period, and if so, the date of remedy selection.
- viii. Specify whether remedial activities were initiated or are ongoing under 35 I.A.C. § 845.780 during the current annual reporting period.

An operating permit application for the NAP and OEAP was submitted by DMG to IEPA by October 31, 2021 in accordance with the requirements specified in 35 I.A.C. § 845.230(d), and is pending approval. Therefore, the Part 845 groundwater monitoring program has not yet been initiated. This report summarizes the data collected for the NAP and OEAP as it was presented in the operating permit application, and includes the following:

- A map showing the CCR SI and all proposed background (or upgradient) and downgradient monitoring wells, including their identification numbers, that are part of the proposed groundwater monitoring program for the CCR SI presented in the GMP included in the operating permit application (Ramboll, 2021a).
- Identification of monitoring wells that were installed during 2021 to fulfill the requirements of 35 I.A.C. § 845.620(b).
- Representative potentiometric surface maps from the independent sampling events conducted in 2021 to meet the requirements of 35 I.A.C. § 845.650(b)(1)(A), as presented in the HCR included in the operating permit application (Ramboll, 2021b).
- A summary from the independent sampling events completed in 2021, including the number of groundwater samples that were collected for analysis for each proposed background and downgradient well and the dates the samples were collected.
- The proposed GWPS as presented in the GMP.
- A summary of the History of Potential Exceedances included in the operating permit application (Ramboll, 2021c), as required by 35 I.A.C. § 845.230(d), summarizing groundwater concentrations from 2015 to 2021 that exceeded the proposed GWPS.
 - These are considered potential exceedances because the methodology used to determine them is proposed in the Statistical Analysis Plan (Appendix A of the GMP), which is pending IEPA approval.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The Part 845 groundwater monitoring program will commence the quarter following IEPA approval and issuance of the operating permit for the NAP and OEAP.

3. KEY ACTIONS COMPLETED IN 2021

Work was completed in 2021 to meet the requirements of Part 845 and details were provided in the operating permit application submitted to IEPA. The boring logs and well construction forms are included in the HCR provided with the operating permit application (Ramboll, 2021b).

The proposed Part 845 monitoring well network is presented in **Figure 1** and summarized below in **Table A**. The proposed Part 845 monitoring well network also includes wells previously installed for other programs.

Well ID	Monitored Unit	Well Screen Interval (feet bgs)	Well Type ¹
02*	LGU 30.1 - 39.7		Compliance
03R*	LGU	29 - 34	Compliance
04	UA	8.7 - 13.5	Compliance
05	UA	9.1 - 13.9	Compliance
07R	UA	11 - 21	Compliance
08R	UA	9.5 - 14.5	Compliance
17 ²	UA	54 - 59	Compliance
20	UA	12.5 - 17.5	Compliance
21*	LGU	104 - 109	Background
34*	LGU	49.1 - 54.1	Compliance
36	UA	16 - 21	Compliance
37*	LGU	48 - 53	Compliance
38	UA	21 - 31	Compliance
40	UA	12.5 - 17.5	Compliance
41	UA	21 - 31	Compliance
42*	LGU	50 - 60	Background
43*	LGU	55 - 65	Background
101*	LGU	141 - 151	Background
103*	LGU	155 - 165	Background
ND3 ²	CCR	8.7 - 23.3	WLO
OED1 ²	CCR	23.7 - 43.3	WLO
SG01 ^{2,3}	Surface Water	NA	WLO

Table A. Proposed Part 845 Monitoring Well Network

¹ Well type refers to the role of the well in the monitoring network.

² Location is temporary pending implementation of impoundment closure per an approved construction permit application.

³ Surface water level measuring point.

* = Well in the LGU that has been identified to monitor the potential migration pathway (PMP).

bgs = below ground surface

CCR = coal combustion residuals

LGU = lower groundwater unit

NA = not applicable

UA = uppermost aquifer

WLO = water level only

Proposed Part 845 monitoring wells were sampled for eight rounds of independent groundwater samples from March to August 2021 and the results were analyzed for the parameters listed in 35 I.A.C. § 845.600. A summary of the samples collected from background and compliance monitoring wells for determination of the history of potential exceedances is included in **Table B** below. All groundwater elevation data and analytical results obtained in 2021 are presented in the HCR (Ramboll, 2021b). Groundwater elevation contour maps representative of the independent sampling events are presented in **Figures 2 and 3**.

Sampling Dates	Parameters Collected	Monitoring Wells Sampled ¹
March 30 to April 2, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	01, 03R, 08R, 17, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, 102, 103, 104, and 105
April 19 - 21, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	03R, 08R, 17, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, 102, 103, 104, and 105
May 10 - 12, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	03R, 07R, 08R, 17, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, 102, 103, 104, and 105
June 2 - 4, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	03R, 07R, 08R, 17, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, 102, 103, 104, and 105
June 16 - 18, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	03R, 07R, 08R, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, and 104
July 7 - 8, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	03R, 07R, 08R, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, and 104
July 26 - 27, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	02, 03R, 04, 05, 07R, 08R, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, and 104
August 16 - 18, 2021	Metals ² , mercury, inorganic parameters ³ , radium 226 and 228, field parameters ⁴	02, 03R, 04, 05, 07R, 08R, 17, 20, 21, 34, 36, 37, 38, 40, 41, 42, 43, 44, 101, 102, 103, 104, and 105

Table B. Summary of Groundwater Samples Collected

¹ In general, one sample was collected per monitoring well per event.

² Metals include antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, lead, lithium, molybdenum, selenium, and thallium.

³ Inorganic parameters include fluoride, chloride, sulfate, and total dissolved solids (TDS).

⁴ Field parameters include pH, dissolved oxygen, temperature, oxidation/reduction potential, specific conductance, and turbidity.

Evaluation of background groundwater quality is presented in the GMP and the proposed GWPSs are included in **Appendix A.** Compliance with Part 845 will be determined after the first round of groundwater sampling following IEPA's issuance of the operating permit for AP1.

Groundwater concentrations from 2015 to 2021 were presented in the HCR and evaluated in the presentation of the History of Potential Exceedances included in the operating permit application. Groundwater concentrations that exceeded the proposed GWPS are considered potential

exceedances because the methodology used to determine them is proposed in the Statistical Analysis Plan, which is pending IEPA approval. Tables summarizing how potential historical exceedances were determined and the potential exceedances themselves are provided in **Appendix B**.

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

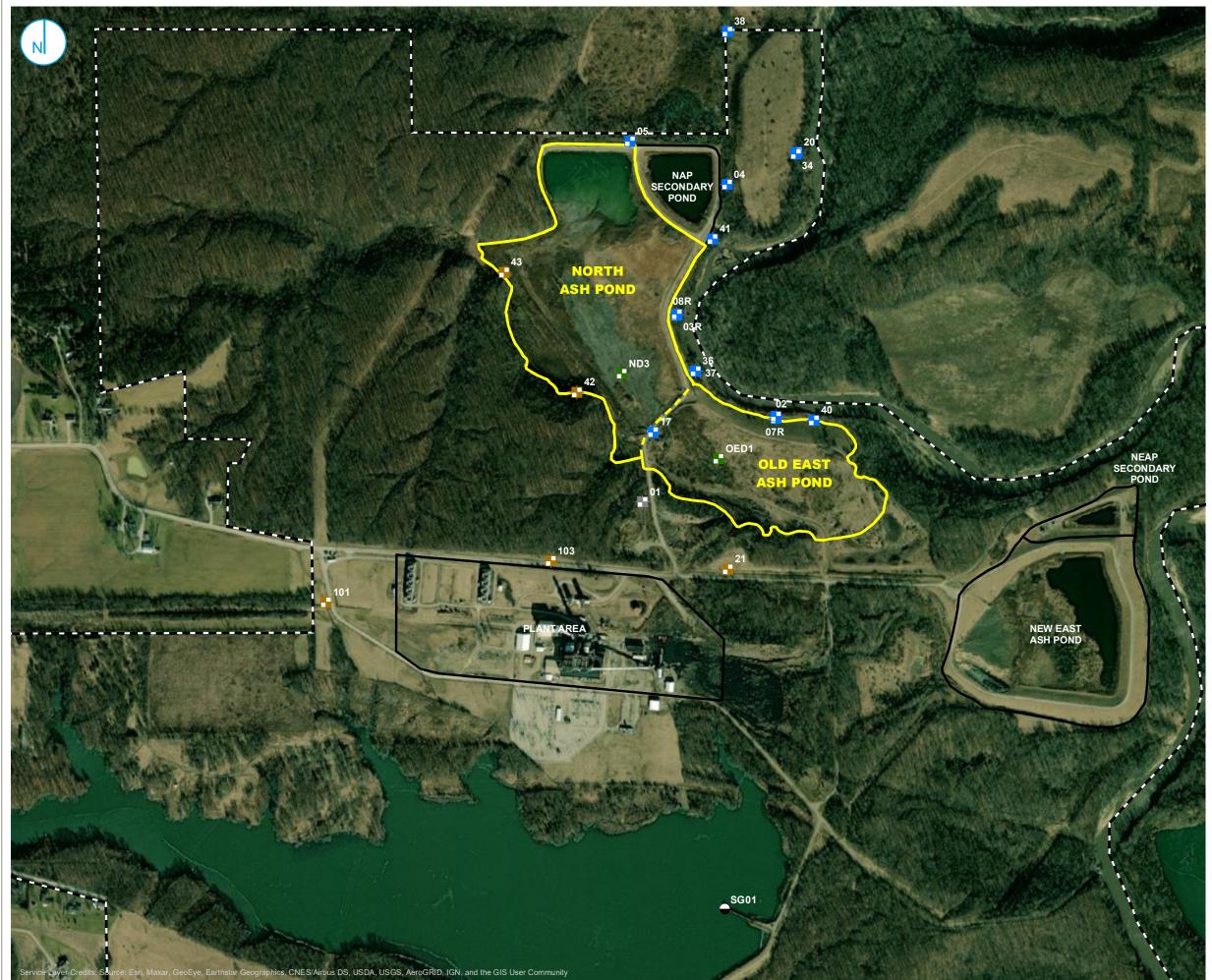
The first round of groundwater sampling for compliance with the Part 845 groundwater monitoring program will commence the quarter following IEPA approval and issuance of the operating permit for the NAP and OEAP, and in accordance with the GMP.

5. KEY ACTIVITIES PLANNED FOR 2022

The following key activities are planned for 2022:

- Groundwater sampling and reporting for compliance will be initiated the quarter following issuance of the operating permit at all monitoring wells in the approved monitoring well network as presented in the GMP and required by 35 I.A.C. § 845.610(b)(3), including:
 - Monthly groundwater elevations.
 - Quarterly groundwater sampling.

6. **REFERENCES**


Illinois Environmental Protection Agency (IEPA), 2021. *In the Matter of: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments: Title 35 Illinois Administration Code 845, Addendum*. April 15, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021a. *Groundwater Monitoring Plan. Vermilion Power Plant, North Ash Pond and Old East Ash Pond, Oakwood, Illinois*. Dynegy Midwest Generation, LLC. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021b. *Hydrogeologic Site Characterization Report. Vermilion Power Plant, North Ash Pond and Old East Ash Pond, Oakwood, Illinois*. Dynegy Midwest Generation, LLC. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021c. *History of Potential Exceedances. Vermilion Power Plant, North Ash Pond and Old East Ash Pond, Oakwood, Illinois.* Dynegy Midwest Generation, LLC. October 25, 2021.

FIGURES

BACKGROUND WELL

SOURCE SAMPLE LOCATION

MONITORING WELL TO BE ABANDONED

GAUGE → STAFF GAUGE

PART 845 REGULATED UNIT (SUBJECT UNIT)

- SITE FEATURE
- PROPERTY BOUNDARY

PROPOSED PART 845 GROUNDWATER MONITORING WELL NETWORK

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NORTH ASH POND AND OLD EAST ASH POND

VERMILION POWER PLANT OAKWOOD, ILLINOIS

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 2

AND CORRECTIVE ACTION REPORT NORTH ASH POND AND OLD EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS

POTENTIOMETRIC SURFACE MAP MARCH 29, 2021

2021 ANNUAL GROUNDWATER MONITORING

ELEVATIONS IN PARENTHESIS WERE NOT USED

0	200	400

___ Feet

NM = NOT MEASURED

FOR CONTOURING.

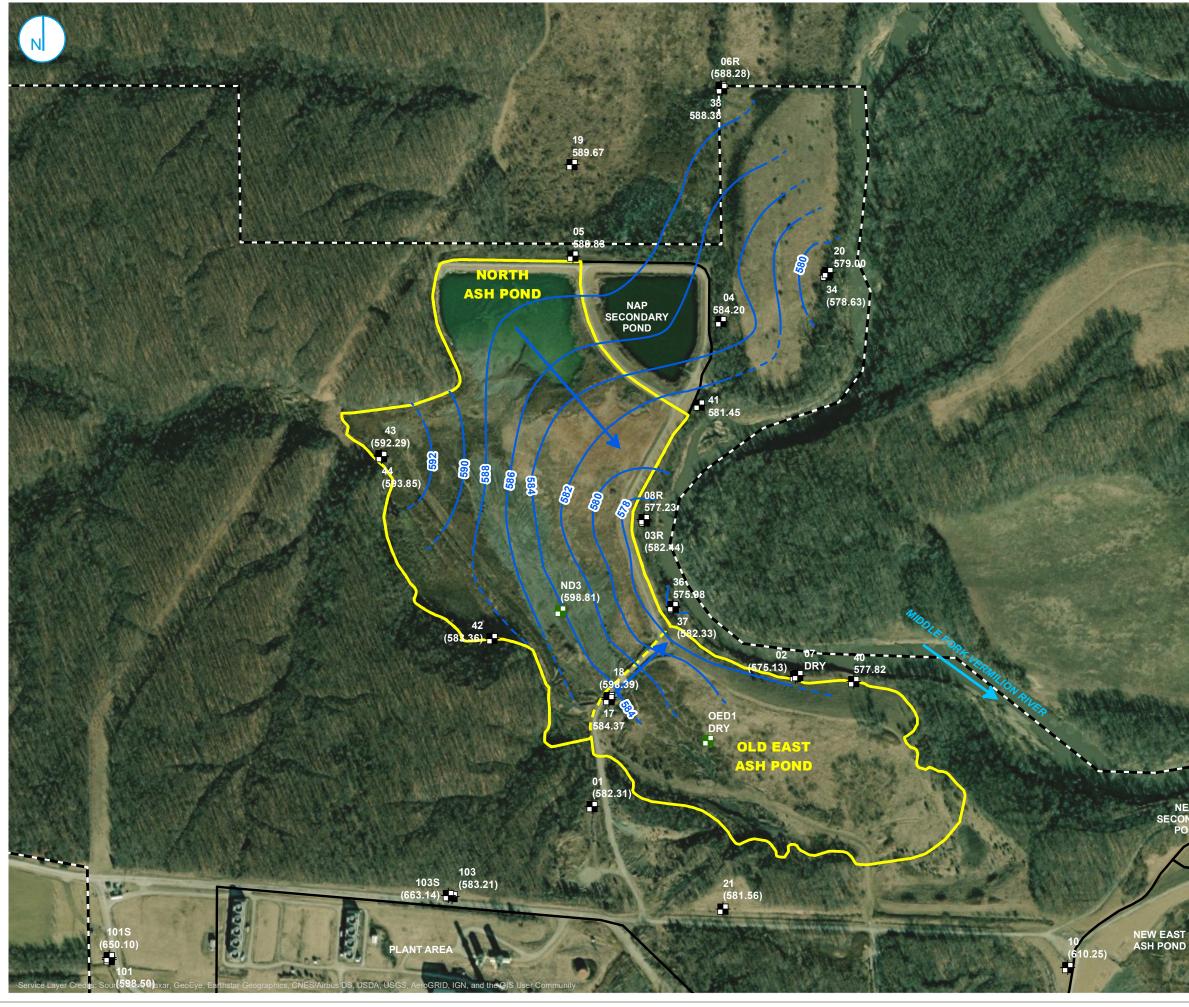
NOTE:

GROUNDWATER FLOW DIRECTION

SOURCE SAMPLE LOCATION

PART 845 REGULATED UNIT (SUBJECT UNIT)

GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88)


- - - INFERRED GROUNDWATER ELEVATION CONTOUR

SITE FEATURE

BACKGROUND WELL HONITORING WELL

PROPERTY BOUNDARY

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 3

AND CORRECTIVE ACTION REPORT NORTH ASH POND AND OLD EAST ASH POND VERMILION POWER PLANT OAKWOOD, ILLINOIS

POTENTIOMETRIC SURFACE MAP **APRIL 12, 2021**

2021 ANNUAL GROUNDWATER MONITORING

400 200 ____ Feet

FOR CONTOURING. NM = NOT MEASURED

NOTE: ELEVATIONS IN PARENTHESIS WERE NOT USED

PART 845 REGULATED UNIT (SUBJECT UNIT)

GROUNDWATER ELEVATION CONTOUR (2-FT

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

SITE FEATURE

PROPERTY BOUNDARY

HONITORING WELL

SOURCE SAMPLE LOCATION

CONTOUR INTERVAL, NAVD88)

GROUNDWATER FLOW DIRECTION

APPENDICES

APPENDIX A TABLE 3-1. BACKGROUND GROUNDWATER QUALITY AND STANDARDS

TABLE 3-1. BACKGROUND GROUNDWATER QUALITY AND STANDARDS

GROUNDWATER MONITORING PLAN VERMILION POWER PLANT NORTH ASH POND AND OLD EAST ASH POND OAKWOOD, ILLINOIS

Parameter	Background Concentration	845 Limit	Groundwater Protection Standard	Unit
Antimony, total	0.001	0.006	0.006	mg/L
Arsenic, total	0.06	0.010	0.060	mg/L
Barium, total	0.52	2.0	2.0	mg/L
Beryllium, total	0.001	0.004	0.004	mg/L
Boron, total	2.45	2	2.45	mg/L
Cadmium, total	0.001	0.005	0.005	mg/L
Chloride, total	82	200	200	mg/L
Chromium, total	0.02	0.1	0.1	mg/L
Cobalt, total	0.004	0.006	0.006	mg/L
Fluoride, total	1.14	4.0	4.0	mg/L
Lead, total	0.006	0.0075	0.0075	mg/L
Lithium, total	0.03	0.04	0.04	mg/L
Mercury, total	0.0002	0.002	0.002	mg/L
Molybdenum, total	0.02	0.1	0.1	mg/L
pH (field)	7.8 / 6.8	9.0 / 6.5	9.0 / 6.5	SU
Radium 226 and 228 combined	1.9	5	5	pCi/L
Selenium, total	0.001	0.05	0.05	mg/L
Sulfate, total	227	400	400	mg/L
Thallium, total	0.002	0.002	0.002	mg/L
Total Dissolved Solids	746	1200	1200	mg/L

Notes:

For pH, the values presented are the upper / lower limits Groundwater protection standards for calcium and turbidity do not apply per 35 I.A.C. § 845.600(b) mg/L = milligrams per liter SU = standard unitspCi/L = picocuries per litergenerated 10/11/2021, 11:40:43 AM CDT

APPENDIX B HISTORY OF POTENTIAL EXCEEDANCES

HISTORY OF POTENTIAL EXCEEDANCES

This presentation of the History of Potential Exceedances, and any corrective action taken to remediate groundwater, is provided to meet the requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.230(d)(2)(M) for the Vermilion Power Plant North Ash Pond and Old East Ash Pond, Illinois Environmental Protection Agency (IEPA) ID Nos. W1838000002-01 and W1838000002-03.

<u>Note</u>

Groundwater concentrations from 2015 to 2021 presented in the Hydrogeologic Site Characterization Report (HCR) Table 4-1, and evaluated and summarized in the following tables, are considered potential exceedances because the methodology used to determine them is proposed in the Statistical Analysis Plan (Appendix A to Groundwater Monitoring Plan [GMP]), which has not been reviewed or approved by IEPA at the time of submittal of the 35 I.A.C. § 845 Operating Permit application.

Alternate sources for potential exceedances as allowed by 35 I.A.C. § 845.650(e) have not yet been evaluated. These will be evaluated and presented in future submittals to IEPA as appropriate.

Table 1 summarizes how the potential exceedances were determined. Table 2 is a summary of all potential exceedances.

Background Concentrations

Background monitoring wells identified in the GMP include 21, 42, 43, 101, and 103.

For monitoring wells, either newly constructed in 2021 or existing wells, background concentrations calculated from the eight sampling events required by 35 I.A.C. § 845.650(b)(1)(A), to be collected within 180 days from April 21, 2021, were compared to the standards identified in 35 I.A.C. § 845.600(a)(1). For constituents with calculated background concentrations greater than the standards in 35 I.A.C. § 845.600(a)(1), those calculated background concentrations were used as GWPSs. Compliance well statistical calculations from that same time period were compared to the GWPSs to determine potential exceedances.

Corrective Action

No corrective actions have been taken to remediate the groundwater.

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
01	LGU	845	Antimony, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
01	LGU	845	Arsenic, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.001	0.060	0.060	0.01	Background
01	LGU	845	Barium, total	mg/L	03/31/2021 - 06/04/2021	CI around mean	0.00765	2.0	0.52	2	Standard
01	LGU	845	Beryllium, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
01	LGU	845	Boron, total	mg/L	03/31/2021 - 06/04/2021	Future median	4.2	2.4	2.4	2	Background
01	LGU	845	Cadmium, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
01	LGU	845	Chloride, total	mg/L	03/31/2021 - 06/04/2021	CI around mean	12	200	82	200	Standard
01	LGU	845	Chromium, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
01	LGU	845	Cobalt, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
01	LGU	845	Fluoride, total	mg/L	03/31/2021 - 06/04/2021	CI around median	0	4.0	1.1	4	Standard
01	LGU	845	Lead, total	mg/L	03/31/2021 - 06/04/2021	CI around mean	-0.0000355	0.0075	0.006	0.0075	Standard
01	LGU	845	Lithium, total	mg/L	03/31/2021 - 06/04/2021	CI around mean	0.037	0.040	0.030	0.04	Standard
01	LGU	845	Mercury, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
01	LGU	845	Molybdenum, total	mg/L	03/31/2021 - 06/04/2021	CI around median	0	0.10	0.020	0.1	Standard
01	LGU	845	pH (field)	SU	03/31/2021 - 06/04/2021	CI around mean	6.8	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
01	LGU	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 06/04/2021	CI around mean	-0.493	5.0	1.9	5	Standard
01	LGU	845	Selenium, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
01	LGU	845	Sulfate, total	mg/L	03/31/2021 - 06/04/2021	CI around mean	839	400	227	400	Standard
01	LGU	845	Thallium, total	mg/L	03/31/2021 - 06/04/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
01	LGU	845	Total Dissolved Solids	mg/L	03/31/2021 - 06/04/2021	CI around mean	1640	1200	746	1200	Standard
02	LGU	845	Antimony, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
02	LGU	845	Arsenic, total	mg/L	03/31/2021 - 08/17/2021	Future median	0.0057	0.060	0.060	0.01	Background
02	LGU	845	Barium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.20	2.0	0.52	2	Standard
02	LGU	845	Beryllium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
02	LGU	845	Boron, total	mg/L	03/31/2021 - 08/17/2021	Future median	0.33	2.4	2.4	2	Background
02	LGU	845	Cadmium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
02	LGU	845	Chloride, total	mg/L	03/31/2021 - 08/17/2021	CB around linear reg	44	200	82	200	Standard
02	LGU	845	Chromium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
02	LGU	845	Cobalt, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
02	LGU	845	Fluoride, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.47	4.0	1.1	4	Standard
02	LGU	845	Lead, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
02	LGU	845	Lithium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.00294	0.040	0.030	0.04	Standard
02	LGU	845	Mercury, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
02	LGU	845	Molybdenum, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
02	LGU	845	pH (field)	SU	03/31/2021 - 08/17/2021	CI around mean	7.3	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
02	LGU	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 08/17/2021	CI around mean	0.33	5.0	1.9	5	Standard
02	LGU	845	Selenium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
02	LGU	845	Sulfate, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	85	400	227	400	Standard
02	LGU	845	Thallium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
02	LGU	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/17/2021	CI around mean	561	1200	746	1200	Standard
03R	LGU	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
03R	LGU	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.00081	0.060	0.060	0.01	Background
03R	LGU	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.28	2.0	0.52	2	Standard
03R	LGU	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
03R	LGU	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	20	2.4	2.4	2	Background
03R	LGU	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.001	0.005	0.001	0.005	Standard
03R	LGU	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	27	200	82	200	Standard
03R	LGU	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.00123	0.10	0.020	0.1	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
03R	LGU	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
03R	LGU	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.44	4.0	1.1	4	Standard
03R	LGU	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.001	0.0075	0.006	0.0075	Standard
03R	LGU	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.003	0.040	0.030	0.04	Standard
03R	LGU	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
03R	LGU	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.17	0.10	0.020	0.1	Standard
03R	LGU	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	7.2	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
03R	LGU	845	Radium 226 + radium 228, total	pCi/L	04/21/2021 - 08/16/2021	CI around mean	0.67	5.0	1.9	5	Standard
03R	LGU	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
03R	LGU	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	481	400	227	400	Standard
03R	LGU	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
03R	LGU	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around mean	1070	1200	746	1200	Standard
04	UA	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
04	UA	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	Future median	0.0066	0.060	0.060	0.01	Background
04	UA	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.24	2.0	0.52	2	Standard
04	UA	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
04	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	10	2.4	2.4	2	Background
04	UA	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
04	UA	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	12	200	82	200	Standard
04	UA	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
04	UA	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	Most recent sample	0.001	0.006	0.004	0.006	Standard
04	UA	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.30	4.0	1.1	4	Standard
04	UA	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
04	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.047	0.040	0.030	0.04	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
04	UA	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
04	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.033	0.10	0.020	0.1	Standard
04	UA	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	7.3	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
04	UA	845	Radium 226 + radium 228, total	pCi/L	04/19/2021 - 08/16/2021	CI around mean	0.55	5.0	1.9	5	Standard
04	UA	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
04	UA	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	58	400	227	400	Standard
04	UA	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
04	UA	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around mean	390	1200	746	1200	Standard
05	UA	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
05	UA	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.060	0.060	0.01	Background
05	UA	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.021	2.0	0.52	2	Standard
05	UA	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
05	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	18	2.4	2.4	2	Background
05	UA	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
05	UA	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around median	9.0	200	82	200	Standard
05	UA	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
05	UA	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
05	UA	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.55	4.0	1.1	4	Standard
05	UA	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
05	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.084	0.040	0.030	0.04	Standard
05	UA	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
05	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.024	0.10	0.020	0.1	Standard
05	UA	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	7.1	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
05	UA	845	Radium 226 + radium 228, total	pCi/L	04/21/2021 - 08/16/2021	CI around geomean	0.041	5.0	1.9	5	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
05	UA	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
05	UA	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	194	400	227	400	Standard
05	UA	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
05	UA	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around mean	522	1200	746	1200	Standard
07R	UA	845	Antimony, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	0.000746	0.006	0.001	0.006	Standard
07R	UA	845	Arsenic, total	mg/L	05/12/2021 - 08/17/2021	Future median	0.002	0.060	0.060	0.01	Background
07R	UA	845	Barium, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	2.0	0.52	2	Standard
07R	UA	845	Beryllium, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	0.004	0.001	0.004	Standard
07R	UA	845	Boron, total	mg/L	05/12/2021 - 08/17/2021	Future median	42	2.4	2.4	2	Background
07R	UA	845	Cadmium, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	0.005	0.001	0.005	Standard
07R	UA	845	Chloride, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	200	82	200	Standard
07R	UA	845	Chromium, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	0.10	0.020	0.1	Standard
07R	UA	845	Cobalt, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	0.006	0.004	0.006	Standard
07R	UA	845	Fluoride, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	0.11	4.0	1.1	4	Standard
07R	UA	845	Lead, total	mg/L	05/12/2021 - 08/17/2021	CI around median	0	0.0075	0.006	0.0075	Standard
07R	UA	845	Lithium, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	0.52	0.040	0.030	0.04	Standard
07R	UA	845	Mercury, total	mg/L	05/12/2021 - 08/17/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
07R	UA	845	Molybdenum, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	0.36	0.10	0.020	0.1	Standard
07R	UA	845	pH (field)	SU	05/12/2021 - 08/17/2021	CI around mean	7.2	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
07R	UA	845	Radium 226 + radium 228, total	pCi/L	05/12/2021 - 08/17/2021	CI around geomean	0.14	5.0	1.9	5	Standard
07R	UA	845	Selenium, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	-0.000443	0.050	0.001	0.05	Standard
07R	UA	845	Sulfate, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	1780	400	227	400	Standard
07R	UA	845	Thallium, total	mg/L	05/12/2021 - 08/17/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
07R	UA	845	Total Dissolved Solids	mg/L	05/12/2021 - 08/17/2021	CI around mean	2850	1200	746	1200	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
08R	UA	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
08R	UA	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	Future median	0.017	0.060	0.060	0.01	Background
08R	UA	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.054	2.0	0.52	2	Standard
08R	UA	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
08R	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	36	2.4	2.4	2	Background
08R	UA	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
08R	UA	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around median	3.0	200	82	200	Standard
08R	UA	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
08R	UA	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
08R	UA	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.10	4.0	1.1	4	Standard
08R	UA	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
08R	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.16	0.040	0.030	0.04	Standard
08R	UA	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
08R	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.12	0.10	0.020	0.1	Standard
08R	UA	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	6.7	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
08R	UA	845	Radium 226 + radium 228, total	pCi/L	04/21/2021 - 08/16/2021	CI around mean	0.14	5.0	1.9	5	Standard
08R	UA	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
08R	UA	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	351	400	227	400	Standard
08R	UA	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
08R	UA	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around mean	909	1200	746	1200	Standard
17	UA	845	Antimony, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
17	UA	845	Arsenic, total	mg/L	03/31/2021 - 08/16/2021	Future median	0.00494	0.060	0.060	0.01	Background
17	UA	845	Barium, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.023	2.0	0.52	2	Standard
17	UA	845	Beryllium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
17	UA	845	Boron, total	mg/L	03/31/2021 - 08/16/2021	Future median	4.9	2.4	2.4	2	Background
17	UA	845	Cadmium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
17	UA	845	Chloride, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	2.6	200	82	200	Standard
17	UA	845	Chromium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
17	UA	845	Cobalt, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.00151	0.006	0.004	0.006	Standard
17	UA	845	Fluoride, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.13	4.0	1.1	4	Standard
17	UA	845	Lead, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.000685	0.0075	0.006	0.0075	Standard
17	UA	845	Lithium, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.017	0.040	0.030	0.04	Standard
17	UA	845	Mercury, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
17	UA	845	Molybdenum, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.000661	0.10	0.020	0.1	Standard
17	UA	845	pH (field)	SU	03/31/2021 - 08/16/2021	CI around mean	6.6	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
17	UA	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 08/16/2021	CI around mean	-0.282	5.0	1.9	5	Standard
17	UA	845	Selenium, total	mg/L	03/31/2021 - 08/16/2021	Most recent sample	0.001	0.050	0.001	0.05	Standard
17	UA	845	Sulfate, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	838	400	227	400	Standard
17	UA	845	Thallium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
17	UA	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/16/2021	CI around mean	1690	1200	746	1200	Standard
20	UA	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
20	UA	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	Future median	0.001	0.060	0.060	0.01	Background
20	UA	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.015	2.0	0.52	2	Standard
20	UA	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
20	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.16	2.4	2.4	2	Background
20	UA	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
20	UA	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around median	4.0	200	82	200	Standard
20	UA	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
20	UA	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.001	0.006	0.004	0.006	Standard
20	UA	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.10	4.0	1.1	4	Standard
20	UA	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
20	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around geomean	0.018	0.040	0.030	0.04	Standard
20	UA	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
20	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.0015	0.10	0.020	0.1	Standard
20	UA	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	6.9	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
20	UA	845	Radium 226 + radium 228, total	pCi/L	04/19/2021 - 08/16/2021	CI around mean	0.20	5.0	1.9	5	Standard
20	UA	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
20	UA	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	21	400	227	400	Standard
20	UA	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
20	UA	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	281	1200	746	1200	Standard
34	LGU	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
34	LGU	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	Future median	0.027	0.060	0.060	0.01	Background
34	LGU	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.15	2.0	0.52	2	Standard
34	LGU	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
34	LGU	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.36	2.4	2.4	2	Background
34	LGU	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
34	LGU	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	33	200	82	200	Standard
34	LGU	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.00136	0.10	0.020	0.1	Standard
34	LGU	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.000912	0.006	0.004	0.006	Standard
34	LGU	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.65	4.0	1.1	4	Standard
34	LGU	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.00126	0.0075	0.006	0.0075	Standard
34	LGU	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.00312	0.040	0.030	0.04	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
34	LGU	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
34	LGU	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.001	0.10	0.020	0.1	Standard
34	LGU	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	6.9	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
34	LGU	845	Radium 226 + radium 228, total	pCi/L	04/19/2021 - 08/16/2021	CI around mean	0.15	5.0	1.9	5	Standard
34	LGU	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
34	LGU	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CI around median	10	400	227	400	Standard
34	LGU	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
34	LGU	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around median	464	1200	746	1200	Standard
36	UA	845	Antimony, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
36	UA	845	Arsenic, total	mg/L	03/31/2021 - 08/16/2021	CB around linear reg	0.00251	0.060	0.060	0.01	Background
36	UA	845	Barium, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.11	2.0	0.52	2	Standard
36	UA	845	Beryllium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
36	UA	845	Boron, total	mg/L	03/31/2021 - 08/16/2021	Future median	12	2.4	2.4	2	Background
36	UA	845	Cadmium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
36	UA	845	Chloride, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	21	200	82	200	Standard
36	UA	845	Chromium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
36	UA	845	Cobalt, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
36	UA	845	Fluoride, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.25	4.0	1.1	4	Standard
36	UA	845	Lead, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
36	UA	845	Lithium, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.098	0.040	0.030	0.04	Standard
36	UA	845	Mercury, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
36	UA	845	Molybdenum, total	mg/L	03/31/2021 - 08/16/2021	CB around linear reg	0.015	0.10	0.020	0.1	Standard
36	UA	845	pH (field)	SU	03/31/2021 - 08/16/2021	CI around mean	6.9	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
36	UA	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 08/16/2021	CI around mean	1.1	5.0	1.9	5	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
36	UA	845	Selenium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
36	UA	845	Sulfate, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	924	400	227	400	Standard
36	UA	845	Thallium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
36	UA	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/16/2021	CI around mean	1630	1200	746	1200	Standard
37	LGU	845	Antimony, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
37	LGU	845	Arsenic, total	mg/L	03/31/2021 - 08/16/2021	CB around linear reg	0.027	0.060	0.060	0.01	Background
37	LGU	845	Barium, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.27	2.0	0.52	2	Standard
37	LGU	845	Beryllium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
37	LGU	845	Boron, total	mg/L	03/31/2021 - 08/16/2021	Future median	1.3	2.4	2.4	2	Background
37	LGU	845	Cadmium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
37	LGU	845	Chloride, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	43	200	82	200	Standard
37	LGU	845	Chromium, total	mg/L	03/31/2021 - 08/16/2021	CI around median	0.0015	0.10	0.020	0.1	Standard
37	LGU	845	Cobalt, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
37	LGU	845	Fluoride, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.60	4.0	1.1	4	Standard
37	LGU	845	Lead, total	mg/L	03/31/2021 - 08/16/2021	CI around median	0.001	0.0075	0.006	0.0075	Standard
37	LGU	845	Lithium, total	mg/L	03/31/2021 - 08/16/2021	CI around median	0.003	0.040	0.030	0.04	Standard
37	LGU	845	Mercury, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
37	LGU	845	Molybdenum, total	mg/L	03/31/2021 - 08/16/2021	CI around median	0.001	0.10	0.020	0.1	Standard
37	LGU	845	pH (field)	SU	03/31/2021 - 08/16/2021	CI around mean	6.8	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
37	LGU	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 08/16/2021	CI around mean	0.60	5.0	1.9	5	Standard
37	LGU	845	Selenium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
37	LGU	845	Sulfate, total	mg/L	03/31/2021 - 08/16/2021	CB around linear reg	228	400	227	400	Standard
37	LGU	845	Thallium, total	mg/L	03/31/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
37	LGU	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/16/2021	CB around linear reg	759	1200	746	1200	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
38	UA	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
38	UA	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.00936	0.060	0.060	0.01	Background
38	UA	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.17	2.0	0.52	2	Standard
38	UA	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
38	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	0.46	2.4	2.4	2	Background
38	UA	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
38	UA	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	18	200	82	200	Standard
38	UA	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
38	UA	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
38	UA	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.29	4.0	1.1	4	Standard
38	UA	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
38	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	-0.00874	0.040	0.030	0.04	Standard
38	UA	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
38	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	-0.0014	0.10	0.020	0.1	Standard
38	UA	845	pH (field)	SU	03/30/2021 - 08/16/2021	CB around linear reg	6.6	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
38	UA	845	Radium 226 + radium 228, total	pCi/L	04/19/2021 - 08/16/2021	CI around mean	0.66	5.0	1.9	5	Standard
38	UA	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
38	UA	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	10	400	227	400	Standard
38	UA	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
38	UA	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around mean	501	1200	746	1200	Standard
40	UA	845	Antimony, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
40	UA	845	Arsenic, total	mg/L	03/31/2021 - 08/17/2021	Future median	0.019	0.060	0.060	0.01	Background
40	UA	845	Barium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.031	2.0	0.52	2	Standard
40	UA	845	Beryllium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
40	UA	845	Boron, total	mg/L	03/31/2021 - 08/17/2021	Future median	20	2.4	2.4	2	Background
40	UA	845	Cadmium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
40	UA	845	Chloride, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	14	200	82	200	Standard
40	UA	845	Chromium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
40	UA	845	Cobalt, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.0051	0.006	0.004	0.006	Standard
40	UA	845	Fluoride, total	mg/L	03/31/2021 - 08/17/2021	Most recent sample	0.10	4.0	1.1	4	Standard
40	UA	845	Lead, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
40	UA	845	Lithium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.70	0.040	0.030	0.04	Standard
40	UA	845	Mercury, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
40	UA	845	Molybdenum, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.062	0.10	0.020	0.1	Standard
40	UA	845	pH (field)	SU	03/31/2021 - 08/17/2021	CI around mean	6.4	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
40	UA	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 08/17/2021	CI around mean	0.53	5.0	1.9	5	Standard
40	UA	845	Selenium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
40	UA	845	Sulfate, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	2720	400	227	400	Standard
40	UA	845	Thallium, total	mg/L	03/31/2021 - 08/17/2021	CI around median	0.001	0.002	0.002	0.002	Standard
40	UA	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/17/2021	CI around mean	4290	1200	746	1200	Standard
41	UA	845	Antimony, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
41	UA	845	Arsenic, total	mg/L	03/30/2021 - 08/16/2021	CB around linear reg	0.00812	0.060	0.060	0.01	Background
41	UA	845	Barium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.23	2.0	0.52	2	Standard
41	UA	845	Beryllium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
41	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	3.0	2.4	2.4	2	Background
41	UA	845	Cadmium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
41	UA	845	Chloride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	57	200	82	200	Standard
41	UA	845	Chromium, total	mg/L	03/30/2021 - 08/16/2021	CI around median	0.001	0.10	0.020	0.1	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
41	UA	845	Cobalt, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.006	0.004	0.006	Standard
41	UA	845	Fluoride, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.41	4.0	1.1	4	Standard
41	UA	845	Lead, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.0075	0.006	0.0075	Standard
41	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.003	0.040	0.030	0.04	Standard
41	UA	845	Mercury, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
41	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.0015	0.10	0.020	0.1	Standard
41	UA	845	pH (field)	SU	03/30/2021 - 08/16/2021	CI around mean	6.9	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
41	UA	845	Radium 226 + radium 228, total	pCi/L	04/20/2021 - 08/16/2021	CI around mean	1.1	5.0	1.9	5	Standard
41	UA	845	Selenium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
41	UA	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CI around median	10	400	227	400	Standard
41	UA	845	Thallium, total	mg/L	03/30/2021 - 08/16/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
41	UA	845	Total Dissolved Solids	mg/L	03/30/2021 - 08/16/2021	CI around mean	588	1200	746	1200	Standard
44	UCU	845	Antimony, total	mg/L	03/31/2021 - 08/17/2021	CI around median	0.001	0.006	0.001	0.006	Standard
44	UCU	845	Arsenic, total	mg/L	03/31/2021 - 08/17/2021	Future median	0.029	0.060	0.060	0.01	Background
44	UCU	845	Barium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.16	2.0	0.52	2	Standard
44	UCU	845	Beryllium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
44	UCU	845	Boron, total	mg/L	03/31/2021 - 08/17/2021	Future median	1.3	2.4	2.4	2	Background
44	UCU	845	Cadmium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
44	UCU	845	Chloride, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	46	200	82	200	Standard
44	UCU	845	Chromium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.00149	0.10	0.020	0.1	Standard
44	UCU	845	Cobalt, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.000833	0.006	0.004	0.006	Standard
44	UCU	845	Fluoride, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.88	4.0	1.1	4	Standard
44	UCU	845	Lead, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.000854	0.0075	0.006	0.0075	Standard
44	UCU	845	Lithium, total	mg/L	03/31/2021 - 08/17/2021	CI around geomean	0.00445	0.040	0.030	0.04	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
44	UCU	845	Mercury, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
44	UCU	845	Molybdenum, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.00905	0.10	0.020	0.1	Standard
44	UCU	845	pH (field)	SU	03/31/2021 - 08/17/2021	CB around linear reg	7.1	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
44	UCU	845	Radium 226 + radium 228, total	pCi/L	03/31/2021 - 08/17/2021	CI around mean	0.036	5.0	1.9	5	Standard
44	UCU	845	Selenium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
44	UCU	845	Sulfate, total	mg/L	03/31/2021 - 08/17/2021	CB around linear reg	-4.8	400	227	400	Standard
44	UCU	845	Thallium, total	mg/L	03/31/2021 - 08/17/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
44	UCU	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/17/2021	CI around median	564	1200	746	1200	Standard
102	LGU	845	Antimony, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
102	LGU	845	Arsenic, total	mg/L	04/01/2021 - 08/18/2021	Future median	0.010	0.060	0.060	0.01	Background
102	LGU	845	Barium, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	0.16	2.0	0.52	2	Standard
102	LGU	845	Beryllium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
102	LGU	845	Boron, total	mg/L	04/01/2021 - 08/18/2021	Future median	1.6	2.4	2.4	2	Background
102	LGU	845	Cadmium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
102	LGU	845	Chloride, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	-9.38	200	82	200	Standard
102	LGU	845	Chromium, total	mg/L	04/01/2021 - 08/18/2021	CI around geomean	0.000512	0.10	0.020	0.1	Standard
102	LGU	845	Cobalt, total	mg/L	04/01/2021 - 08/18/2021	CI around median	0	0.006	0.004	0.006	Standard
102	LGU	845	Fluoride, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	0.50	4.0	1.1	4	Standard
102	LGU	845	Lead, total	mg/L	04/01/2021 - 08/18/2021	CI around median	0	0.0075	0.006	0.0075	Standard
102	LGU	845	Lithium, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	-0.00425	0.040	0.030	0.04	Standard
102	LGU	845	Mercury, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
102	LGU	845	Molybdenum, total	mg/L	04/01/2021 - 08/18/2021	CI around geomean	0.000713	0.10	0.020	0.1	Standard
102	LGU	845	pH (field)	SU	04/01/2021 - 08/18/2021	CI around mean	6.7	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
102	LGU	845	Radium 226 + radium 228, total	pCi/L	04/01/2021 - 08/18/2021	CI around mean	0.00854	5.0	1.9	5	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
102	LGU	845	Selenium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
102	LGU	845	Sulfate, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	27	400	227	400	Standard
102	LGU	845	Thallium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
102	LGU	845	Total Dissolved Solids	mg/L	04/01/2021 - 08/18/2021	CI around mean	452	1200	746	1200	Standard
104	LGU	845	Antimony, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
104	LGU	845	Arsenic, total	mg/L	04/01/2021 - 08/18/2021	CB around linear reg	0.016	0.060	0.060	0.01	Background
104	LGU	845	Barium, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	0.35	2.0	0.52	2	Standard
104	LGU	845	Beryllium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.004	0.001	0.004	Standard
104	LGU	845	Boron, total	mg/L	04/01/2021 - 08/18/2021	Future median	3.6	2.4	2.4	2	Background
104	LGU	845	Cadmium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
104	LGU	845	Chloride, total	mg/L	04/01/2021 - 08/18/2021	CB around linear reg	23	200	82	200	Standard
104	LGU	845	Chromium, total	mg/L	04/01/2021 - 08/18/2021	CI around median	0.001	0.10	0.020	0.1	Standard
104	LGU	845	Cobalt, total	mg/L	04/01/2021 - 08/18/2021	CI around median	0.001	0.006	0.004	0.006	Standard
104	LGU	845	Fluoride, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	0.53	4.0	1.1	4	Standard
104	LGU	845	Lead, total	mg/L	04/01/2021 - 08/18/2021	CI around median	0.001	0.0075	0.006	0.0075	Standard
104	LGU	845	Lithium, total	mg/L	04/01/2021 - 08/18/2021	CI around mean	0.00255	0.040	0.030	0.04	Standard
104	LGU	845	Mercury, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.0002	0.002	0.0002	0.002	Standard
104	LGU	845	Molybdenum, total	mg/L	04/01/2021 - 08/18/2021	CB around linear reg	-0.00156	0.10	0.020	0.1	Standard
104	LGU	845	pH (field)	SU	04/01/2021 - 08/18/2021	CI around mean	7.1	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
104	LGU	845	Radium 226 + radium 228, total	pCi/L	04/01/2021 - 08/18/2021	CI around mean	0.55	5.0	1.9	5	Standard
104	LGU	845	Selenium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
104	LGU	845	Sulfate, total	mg/L	04/01/2021 - 08/18/2021	CI around median	371	400	227	400	Standard
104	LGU	845	Thallium, total	mg/L	04/01/2021 - 08/18/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
104	LGU	845	Total Dissolved Solids	mg/L	04/01/2021 - 08/18/2021	CI around mean	1030	1200	746	1200	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
105	LGU	845	Antimony, total	mg/L	04/02/2021 - 08/18/2021	All ND - Last	0.001	0.006	0.001	0.006	Standard
105	LGU	845	Arsenic, total	mg/L	04/02/2021 - 08/18/2021	Future median	0.039	0.060	0.060	0.01	Background
105	LGU	845	Barium, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	2.0	0.52	2	Standard
105	LGU	845	Beryllium, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	0.004	0.001	0.004	Standard
105	LGU	845	Boron, total	mg/L	04/02/2021 - 08/18/2021	Future median	1.9	2.4	2.4	2	Background
105	LGU	845	Cadmium, total	mg/L	04/02/2021 - 08/18/2021	All ND - Last	0.001	0.005	0.001	0.005	Standard
105	LGU	845	Chloride, total	mg/L	04/02/2021 - 08/18/2021	CI around mean	1.8	200	82	200	Standard
105	LGU	845	Chromium, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	0.10	0.020	0.1	Standard
105	LGU	845	Cobalt, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	0.006	0.004	0.006	Standard
105	LGU	845	Fluoride, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	4.0	1.1	4	Standard
105	LGU	845	Lead, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	0.0075	0.006	0.0075	Standard
105	LGU	845	Lithium, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	0.040	0.030	0.04	Standard
105	LGU	845	Mercury, total	mg/L	04/02/2021 - 08/18/2021	CI around median	0	0.002	0.0002	0.002	Standard
105	LGU	845	Molybdenum, total	mg/L	04/02/2021 - 08/18/2021	CI around mean	0.00112	0.10	0.020	0.1	Standard
105	LGU	845	pH (field)	SU	04/02/2021 - 08/18/2021	CI around mean	7.3	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
105	LGU	845	Radium 226 + radium 228, total	pCi/L	04/02/2021 - 08/18/2021	CI around geomean	0.027	5.0	1.9	5	Standard
105	LGU	845	Selenium, total	mg/L	04/02/2021 - 08/18/2021	All ND - Last	0.001	0.050	0.001	0.05	Standard
105	LGU	845	Sulfate, total	mg/L	04/02/2021 - 08/18/2021	CI around mean	9.9	400	227	400	Standard
105	LGU	845	Thallium, total	mg/L	04/02/2021 - 08/18/2021	All ND - Last	0.002	0.002	0.002	0.002	Standard
105	LGU	845	Total Dissolved Solids	mg/L	04/02/2021 - 08/18/2021	CI around mean	377	1200	746	1200	Standard

TABLE 1. DETERMINATION OF POTENTIAL EXCEEDANCES

HISTORY OF POTENTIAL EXCEEDANCES VERMILION POWER PLANT NORTH ASH POND AND OLD EAST ASH POND OAKWOOD, ILLINOIS

Notes:

Potential exceedance of GWPS

HSU = hydrostratigraphic unit:

LGU = Lower Groundwater Unit

UA = Uppermost Aquifer

UCU = Upper Confining Unit

Program = regulatory program data were collected under:

257 = 40 C.F.R. Part 257 Subpart D (Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments)

845 = 35 I.A.C. Part 845 (Sampling events completed to assess well locations for inclusion in the Part 845 monitoring well network)

mg/L = milligrams per liter

pCi/L = picoCuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result

Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Future median = Median of the three most recent samples

Most recent sample = Result for the most recently collected sample used due to insufficient data

Statistical Result = calculated in accordance with Statistical Analysis Plan using constituent concentrations observed at monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits

GWPS = Groundwater Protection Standard

GWPS Source:

Standard = standard specified in 35 I.A.C. § 845.600(a)(1)

Background = background concentration (see cover page for additional information)

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
01	LGU	845	Boron, total	mg/L	03/31/2021 - 06/04/2021	Future median	4.2	2.4	2.4	2	Background
01	LGU	845	Sulfate, total	mg/L	03/31/2021 - 06/04/2021	CI around mean	839	400	227	400	Standard
01	LGU	845	Total Dissolved Solids	mg/L	03/31/2021 - 06/04/2021	CI around mean	1640	1200	746	1200	Standard
03R	LGU	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	20	2.4	2.4	2	Background
03R	LGU	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.17	0.10	0.020	0.1	Standard
03R	LGU	845	Sulfate, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	481	400	227	400	Standard
04	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	10	2.4	2.4	2	Background
04	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.047	0.040	0.030	0.04	Standard
05	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	18	2.4	2.4	2	Background
05	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.084	0.040	0.030	0.04	Standard
07R	UA	845	Boron, total	mg/L	05/12/2021 - 08/17/2021	Future median	42	2.4	2.4	2	Background
07R	UA	845	Lithium, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	0.52	0.040	0.030	0.04	Standard
07R	UA	845	Molybdenum, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	0.36	0.10	0.020	0.1	Standard
07R	UA	845	Sulfate, total	mg/L	05/12/2021 - 08/17/2021	CI around mean	1780	400	227	400	Standard
07R	UA	845	Total Dissolved Solids	mg/L	05/12/2021 - 08/17/2021	CI around mean	2850	1200	746	1200	Standard
08R	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	36	2.4	2.4	2	Background
08R	UA	845	Lithium, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.16	0.040	0.030	0.04	Standard
08R	UA	845	Molybdenum, total	mg/L	03/30/2021 - 08/16/2021	CI around mean	0.12	0.10	0.020	0.1	Standard
17	UA	845	Boron, total	mg/L	03/31/2021 - 08/16/2021	Future median	4.9	2.4	2.4	2	Background
17	UA	845	Sulfate, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	838	400	227	400	Standard
17	UA	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/16/2021	CI around mean	1690	1200	746	1200	Standard
36	UA	845	Boron, total	mg/L	03/31/2021 - 08/16/2021	Future median	12	2.4	2.4	2	Background
36	UA	845	Lithium, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	0.098	0.040	0.030	0.04	Standard

Sample Location	HSU	Program	Constituent	Result Unit	Sample Date Range	Statistical Calculation	Statistical Result	GWPS	Background	Part 845 Standard	GWPS Source
36	UA	845	Sulfate, total	mg/L	03/31/2021 - 08/16/2021	CI around mean	924	400	227	400	Standard
36	UA	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/16/2021	CI around mean	1630	1200	746	1200	Standard
40	UA	845	Boron, total	mg/L	03/31/2021 - 08/17/2021	Future median	20	2.4	2.4	2	Background
40	UA	845	Lithium, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	0.70	0.040	0.030	0.04	Standard
40	UA	845	pH (field)	SU	03/31/2021 - 08/17/2021	CI around mean	6.4	6.5/9.0	6.8/7.8	6.5/9	Standard/Standard
40	UA	845	Sulfate, total	mg/L	03/31/2021 - 08/17/2021	CI around mean	2720	400	227	400	Standard
40	UA	845	Total Dissolved Solids	mg/L	03/31/2021 - 08/17/2021	CI around mean	4290	1200	746	1200	Standard
41	UA	845	Boron, total	mg/L	03/30/2021 - 08/16/2021	Future median	3.0	2.4	2.4	2	Background
104	LGU	845	Boron, total	mg/L	04/01/2021 - 08/18/2021	Future median	3.6	2.4	2.4	2	Background

Notes:

HSU = hydrostratigraphic unit:

LGU = Lower Groundwater Unit

UA = Uppermost Aquifer

Program = regulatory program data were collected under:

257 = 40 C.F.R. Part 257 Subpart D (Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments)

845 = 35 I.A.C. Part 845 (Sampling events completed to assess well locations for inclusion in the Part 845 monitoring well network)

mg/L = milligrams per liter

pCi/L = picoCuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result

Statistical Calculation = method used to calculate the statistical result:

CI around mean = Confidence interval around the mean

Future median = Median of the three most recent samples

Statistical Result = calculated in accordance with Statistical Analysis Plan using constituent concentrations observed at monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits

GWPS = Groundwater Protection Standard

GWPS Source:

Standard = standard specified in 35 I.A.C. § 845.600(a)(1)

Background = background concentration (see cover page for additional information)

